End-to-end quality of service for large
distributed storage

Scott A. Brandt
Professor
University of California, Santa Cruz

and Carlos Maltzahn, Richard Golding, Theodore Wong

and Tim Kaldewey, Roberto Pineiro,Anna Povzner

6 August 2007

Project overview

* Collaboration between UCSC / IBM Almaden
e UCSC: Scott Brandt, Carlos Maltzahn
* |IBM: Richard Golding, Theodore Wong
* 3 years/ $1,000,000
* Goal: Improve end-to-end performance
management in large clustered storage
* From client, through server, to disk
* Manage performance
* Isolate traffic

* Provide high performance

Stages in the I/O path

prefetch and flow
10 selection writeback control
and head based on with one
scheduling utilization, QoS client

A
I/0 storage network

: | < | <]
disk scheduler cache transport

connection
management
between
clients

|. Disk traffic

2. Management of server cache

3. Flow control across network

network
transport

client
cache

app

/)

app

between

client and
server cache

integration

network
transport

client
cache

app

P ad
Y

e within one client’s session; between clients

4. Management of client cache

System architecture

* Applications request
reservation from broker

 Specify workload: throughput,
read/write ratio, burstiness, etc.

* Broker does admission control

* Requirements are translated to
utilization

» Uetilizations are summed to see
if they are feasible

* Once admitted, I/O streams are
guaranteed (subject to workload
adherence)

* Disk, cache, network
controllers maintain
guarantees

|
Request

)

Reservation
3

Utilization

reservations
4
110

\4

Fahrrad: Efficient QoS-aware Disk Scheduling

* Control of application resource reservation
and usage at the disk level

* Goals:
* Mixed hard, soft, and non-real-time workloads
* Arbitrary granularity of reservations
* Complete isolation of workloads

* Excellent I/O performance

Key observation

 Scheduling consists of two
distinct questions

Resource allocation: How
much resources to allocate to
each process

Dispatching: When to give
each process the resources it
has been allocated

* Most schedulers integrate
their management

 Separating them is powerful!

constrained

Resource Allocation

unconstrained

D>

Missed
Deadline
SRT

Resource

unconstrained constrained

Dispatching

RBED RAD-based CPU scheduler

Period
WCET

Rate

\

w)
ET

Priority

execution
time and
deadline

Adjusted at
run-time

- e mm Em Em Em Em e Em Em Em e Em Em Em Em Em e e R R E R Em e e
A Y

--

e e o mm Em o Em Em Em Em E R Em e e R e Em Em e e e e e Em e e e e o = o= P

’

Utilization-based disk reservations

* Throughput reservations
 Assume worst-case behavior

* Allows reservation of a tiny fraction of actual
throughput

* Utilization reservations
* Easy to make, account for; and guarantee
* Embed application workload information
* Avoid the need for worst-case assumptions

* Workload knowledge + utilization reservation
+ isolation = throughput guarantee

Applying RAD to disk I/0O

 Reservations based on disk time utilization
 Rate = utilization

 Deadlines = times at which actual utilization must
equal reserved utilization (= latency bound)

* Need to be able to reorder requests for
performance

* All requests that can be handled without
jeopardizing deadlines are put into a reordering
set

* Cannot ignore “context switches” (seeks)

Fahrrad: RAD-based /O scheduling

| . Utilization-based reservation, with deadlines

* e.g., 50% of the disk every second, 10% every hour, etc.

2. Requests put into queues

* Each queue has a rate and deadlines

3. Micro-deadlines assigned to requests based on
target rate and worst-case assumptions

4. Requests released to Disk Scheduling Set (DSS)
based on micro-deadline

5. Requests scheduled for service from DSS

6. Micro-deadlines updated based on actual service
times

Fahrrad architecture

Appl U App2

App3

App4

Applications

BE

20%
Vv

SRT1
20%
Vv

SRT2
10%
Vv

HRT
50%
\Y4

\\M{/

Disk
Scheduling

Set

Fahrrad driver

Session queues

Underlying driver

Guaranteeing deadlines

Mdeadlines assigned to each request: di = di.; + WCET / U

Appl ﬂ App2| |App3| |App4 Applications
BE SRT1 SRT2 HRT .
20% 20% 10% 50% Fahrrad driver

\Y4 \Y4 \V4 \Y4

750 750 1500 300

625 625 1250 250

500 500 1000 200 i

375 375 750 | Session queues
250 250 500 100

12% fo 50

Disk WCET = 25 ms
Scheduling

Set

v Underlying driver

Release to DSS

Requests with p-deadline up to horizon (earliest deadline) move to DSS

Applﬂ App2| |App3| |App4 Applications
BE SRT1 SRT2 HRT . =
20% 20% 10% | 50% Fahrrad driver

\V4 \Y4 \V

750 750 1500

625 625 1250

500 500 1000 200 .

750 =6 Session queues
100

1

Disk
Scheduling
Set

50
WCET = 25 ms

Period of each RT stream = 250 ms

Underlying driver

Guaranteeing utilization

Guarantee reserved utilization by shifting p-deadlines

Applu App2 App3| |App4 Applications
BE SRT1 SRT2 HRT _'
i 0% 0% E0% Fahrrad driver
\Y4 \Y4 \V4

750 625 1500

625 500 1250

500 30 i Session queues

Disk

Scheduling

Set

v Underlying driver

A few details

* DSS scheduling
 C-SCAN,SPTF, EDF

* Managing burstiness

* Slots—reserve utilization until request arrives

* Unused slots are allocated to other streams

* Slot swapping—aggregate requests in DSS by swapping slots
* Increases sequentiality of DSS

* Increases isolation and performance

* Isolation—accounting for overheads
* Each stream charged for its seeks

* Each streams charged 2 seeks per deadline

Received disk time [ms]

Fahrrad works

7000
I I 60°/c|,, run length 8, periold 100 ms I I 60°/c|,, run length 8, periold 100 ms
7000 - 30%, run length 128, period 500 ms -------- . 30%, run length 128, period 500 ms --------
6000 PR
6000 4
5000 |-) i
5000 |- i - o
o} .
2] .
8 4000 Fa _
4000] o i
=1 S
=%
S 3000 - s -
3000 - R | 3 L
_____ g :
B [-
2000 | o i 2000 | -
1000 - PRt i 1000 |- i
0 L 1 I I 0 L= | ! 1 I
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time [ms] Time [ms]

Utilization Throughput

Received utilization [%]

60

50

40

30

10 |

0

Isolation between request streams

Utilization Throughput

900
800 |

700 | e
600 | '
500 |)
400 + o
300 | "
200 F
100 |

Throughput [IOs per sec]

0

0

2000 0 500 1000
Period [ms]

500 1000 1500
Period [ms]

 Utilization and throughput of 4 I/O streams as period of stream 4
changes (sequential streams w/long queues)

e Rate:20%

* Deadlines
e Streams [|-3:2s

e Stream 4:varies from |2 msto 2 s

1500

2000

Received utilization [%]

60

50 1

40

30

HRT and BE (slack goes to BE)

Utilization Throughput

900
800
700
600
500
400
300 |
200 1
100

Throughput [IOs per sec]

500 1000 1500 2000 0 500 1000 1500 2000
Period [ms] Period [ms]

 Utilization and throughput of I/O streams as period of stream 4 changes
* Rate: 20%

* Deadlines
* Sequential SRT streams & random BE stream: 2s

e HRT: varies from |25 msto 2 s

Throughput [IOs per sec]

Performance vs. Linux

I I I trlansaction — I I I trlansaction —
media 1 ---a--- media 1 ---a---
1000 media 2 -- - 1000 - media 2 -- -
background - background -
800 800
o
Q
2]
9]
Q.
600 Y 5 600 —
=]
Q.
Ky
[=2)
3
400 I lg_z 400
200 — 200 —
O 1 1 1 T 1 0 % *‘ 1 1 1 W
100 200 300 400 500 0 100 200 300 400 500
Time [sec] Time [sec]

Linux

Fahrrad

Disk scheduling conclusions

* Fahrrad provides

* Integrated hard real-time, soft real-time, and best-
effort service

* Arbitrary (nearly) reservation granularity
* Excellent isolation between processes

* Excellent performance

Server cache management

* Server caching isolates disk from application
behavior

* Buffering smooths workload
* Isolates disk from application period
* Disk deadlines are buffer full times
* Translates between time to space (and back)

* Aside: best-case for disk = worst-cast for cache

Server cache management

 Reads and writes are
handled differently
 Read cases
| . Cache hit; creates slack
2. Cache miss: sent to disk

3. Prefetch: uses slack to
increase efficiency

* NV cache=writes can be

delayed indefinitely

* In general: need at least 3 l
periods of server cache

Network management

* Moving data from client cache to server cache

* Network QoS is well-explored

* Currently examining existing solutions

* Cases
|. One client/server route: O(1)

2. One client/server route with arbitrary application
placement: O(n)

3. Many client/server routes
* w/trunking: polynomial with linear programming: O(n)?

* w/out trunking: NP-complete!?

Client cache management

* Holds application data for transfer to server

* Further isolates application from disk
* Further reduces burstiness

* Further addresses independence of periods

 Coordinates with network and server cache

Spinoff: virtual disks

* Virtual disks—complete isolation of disk
functionality

* Capacity isolation
* Temporal isolation

* Performance isolation
* LUNs provide capacity isolation

* Fahrrad provides temporal and performance
isolation

Conclusions

* Excellent progress (< | year along)

* Disk scheduling: Fahrrad

* Server cache: In progress

* Networking: Preliminary investigation
* Client cache:TBD

* Lots of industry interest: IBM, NetApp,VMware,
SAP, NICTA/OK Labs, ...

* Pursuing DARPA follow-on building on end-to-
end QoS

